# Dietary Supplements: A Necessity or Folly?



Presenter: Dr. Robert Van Saun Professor of Veterinary Science Penn State University

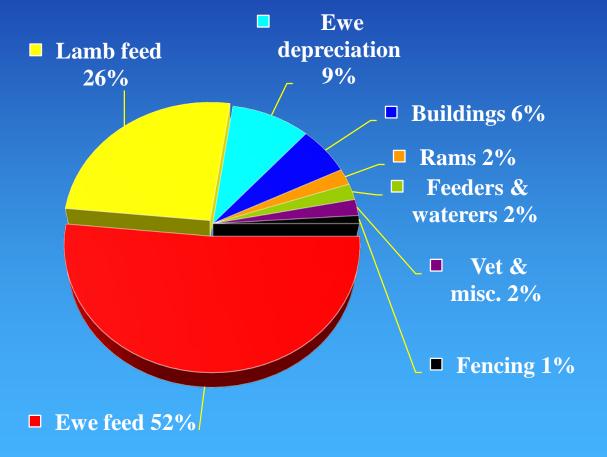
Host/Moderator: Jay Parsons

#### September 22, 2015

This webinar is made possible with funding support from the Let's Grow Committee of the American Sheep Industry Association.

# What is a supplement?

- Definition: "something that completes or enhances something else when added to it"
- > Additional source of essential or useful nutrients to complement forage diet
- Does forage-based diets need supplements?


#### **Essential Nutrients:**

- Water
- Energy
- Protein
- Fatty acids
- Macrominerals (Ca, P, Mg, Na, K, S)
- Microminerals (Co, Cu, Fe, I, Mn, Se, Zn)
- Vitamins
  - Fat-soluble
  - Water-soluble
- Fiber??

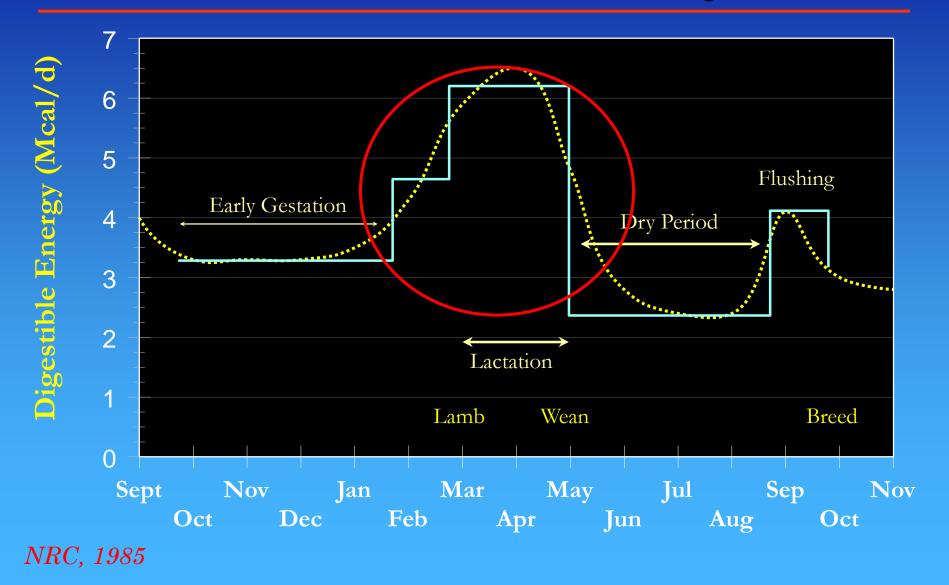
# **Production Expenses**

Nearly 80% of all production expenses are devoted to nutrition.

Small percentage reductions in feed costs can greatly affect profitability.



Midwest data, Jordan, U. Minn


# Why would a supplement be needed for a forage-based diet?

How does your forage *limit* or promote your feeding program?

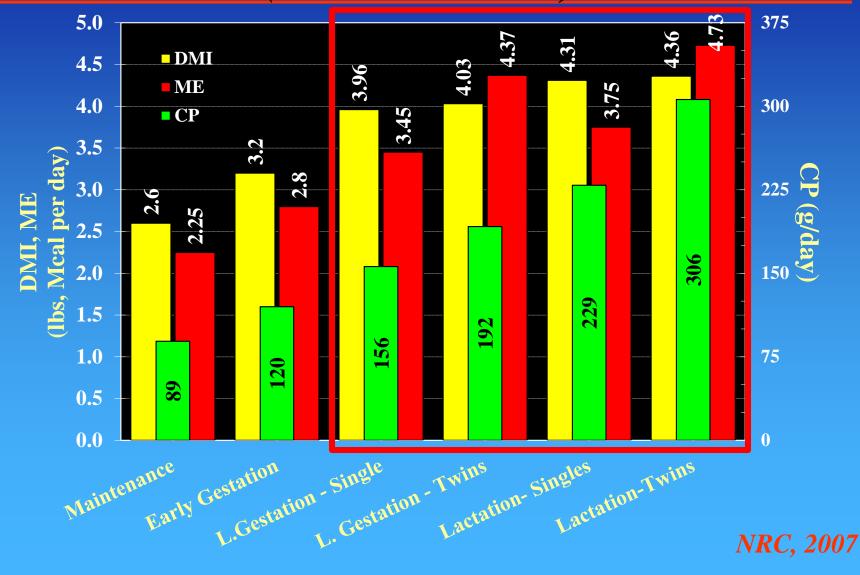



Photo from Dr. Joe Rook

# **Ewe Production Cycle**



#### Ewe Requirements (1541b, Mature, BW)



# **Plant Maturity**

|         |                                                    | TDN%                                                             | CP%                        | NDF%                   | TDN%  | CP%   | NDF%        | TDN%  | CP%   | NDF%                  | TDN%                                           | CP%             | NDF%                                            |
|---------|----------------------------------------------------|------------------------------------------------------------------|----------------------------|------------------------|-------|-------|-------------|-------|-------|-----------------------|------------------------------------------------|-----------------|-------------------------------------------------|
| Al      | falfa                                              | > 64                                                             | >19                        | < 40                   | 56-60 | 17-19 | 40-46       | 50-55 | 13-16 | 47-51                 | < 50                                           | <13             | > 51                                            |
| Gr      | ass                                                | > 54                                                             | >18                        | < 55                   | 47-54 | 13-18 | 55-60       | 43-46 | 8-12  | 61-65                 | < 41                                           | < 8             | > 65                                            |
| L<br>Hi | gh Prote<br>K, P<br>ow Fibe<br>gh Intak<br>mentabi | er<br>te,<br>lity <sup>n</sup><br>Ch<br>ma<br>sta<br>env<br>pron | alleng<br>aintai<br>ble ru | mine<br>ges of<br>ning |       | boot  | d<br>owth s | head  | ing   | abuı<br>poor<br>weigh | asses a<br>ndant<br>quali<br>t loss,<br>oducti | Low<br>P<br>Lov | h Fiber,<br>NDF<br>Energy<br>rotein<br>v Intake |
|         |                                                    |                                                                  |                            |                        |       | gi    | owin's      | laye  |       |                       |                                                |                 |                                                 |

## **NDF Intake Capacity** Silage 24.8 % DM, 18.8% CP, 48.5% NDF

| Pregnancy | NDF Intake as % of Body Weight |       |          |  |  |  |  |
|-----------|--------------------------------|-------|----------|--|--|--|--|
| Week      | Singles                        | Twins | Triplets |  |  |  |  |
| 15        | 0.83                           | 0.81  | 0.74     |  |  |  |  |
| 16        | 0.81                           | 0.73  | 0.71     |  |  |  |  |
| 17        | 0.81                           | 0.65  | 0.68     |  |  |  |  |
| 18        | 0.74                           | 0.65  | 0.64     |  |  |  |  |
| 19        | 0.69                           | 0.62  | 0.59     |  |  |  |  |
| 20        | 0.70                           | 0.60  | 0.55     |  |  |  |  |
| Mean      | 0.76                           | 0.68  | 0.65     |  |  |  |  |

*Orr et al., Anim Prod 1983;36:21* 

# **Effect of Forage NDF**

| Forage |       | NDF Intake as %BW |       |          |  |  |  |
|--------|-------|-------------------|-------|----------|--|--|--|
| NDF%   | Week  | Singles           | Twins | Triplets |  |  |  |
| 44.9   | 18-20 | 0.83              | 0.70  | 0.70     |  |  |  |
| 48.5   | 18-20 | 0.71              | 0.62  | 0.59     |  |  |  |
| 48.5   | 15-17 | 0.82              | 0.74  | 0.71     |  |  |  |
| 63.8   | 15-17 | 0.78              | 0.70  | 0.70     |  |  |  |

Orr et al., Anim Prod 1983;36:21

#### Nutrient Intake Comparison McNeil et al., JAS 1997;75:809

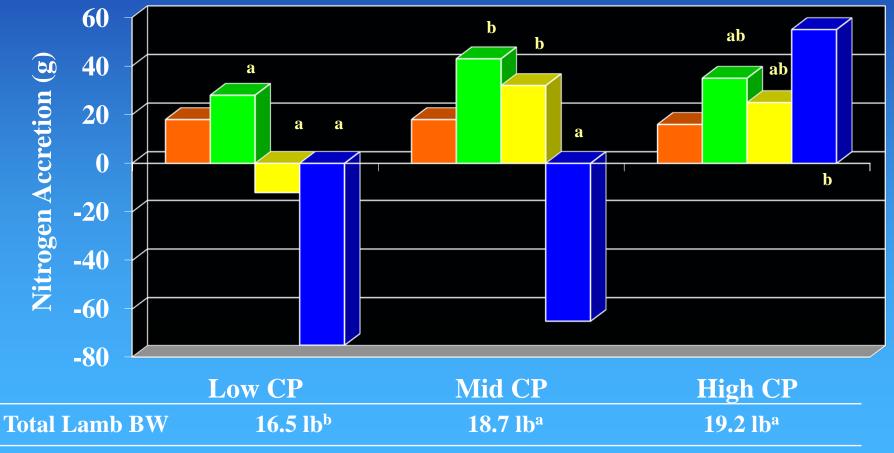
|              | Low Protein | Mid Protein         | <b>High Protein</b> |
|--------------|-------------|---------------------|---------------------|
| DMI, kg      | 1.02        | 1.16                | 1.37                |
| % of BW      | 1.65        | 1.87                | 2.21                |
| ME, Mcal/kg  | 2.7         | 2.7                 | 2.7                 |
| Mcal/day     | 2.2         | 2.7                 | 3.3                 |
| CP, %        | 7.9         | 11.6                | 15.7                |
| g/day        | 81          | 141                 | 215                 |
| NDF, %       | 42.9        | 41.5                | 39.3                |
| % of BW      | 0.71        | 0.78                | 0.89                |
| NRC Require. | 1.7 kg DMI  | <b>3.94 Mcal ME</b> | 183 g CP            |

#### **Adjusted NRC Requirements** *Mature ewe, 70 kg, late pregnancy 180-225% lambing rate*

|              | D    | MI        | ME              | CP    | NDF   | Ca           | P      |
|--------------|------|-----------|-----------------|-------|-------|--------------|--------|
| Total        | 4.03 | 3 lbs     | 4.37<br>Mcal    | 192 g | 560 g | <b>8.8</b> g | 5.3 g  |
| Density      |      | 5 %<br>W  | 1.08<br>Mcal/lb | 10.3% | 30.6% | 0.48 %       | 0.29 % |
| ted<br>Level | lbs  | ⁰∕₀<br>BW | Mcal/lb         | % DM  | % DM  | % DM         | % DM   |
|              | 2.8  | 1.8       | 1.56            | 15.1  | 44.0  | 0.69         | 0.42   |
| Adju<br>take | 3.1  | 2.0       | 1.41            | 13.6  | 39.8  | 0.63         | 0.38   |
| AInt         | 3.4  | 2.2       | 1.29            | 12.4  | 36.3  | 0.57         | 0.34   |
| NRC, 2007    | 3.7  | 2.4       | 1.18            | 11.4  | 33.3  | 0.52         | 0.32   |

# Improper Feeding during Late Pregnancy . . .

- Metabolic disease in ewes
- Poor supply of colostrum
- Poor milk yield
- Small or Large weak neonates
- High postnatal losses






.... Is Freparing to Fall!

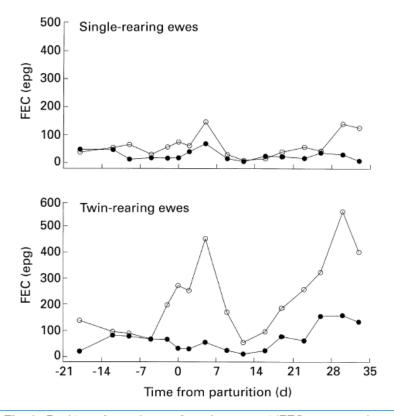
### Maternal Tissue Nitrogen Partitioning in Pregnant Ewes

■ Wool ■ Mammary ■ Organs ■ Carcass

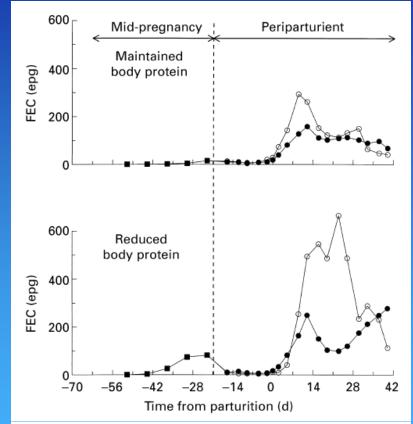


McNeill et al., 1997

## **Gestation Diet Effects on Colostrum Production**


|                             | Low Energy |      | High E | nergy |
|-----------------------------|------------|------|--------|-------|
| Mean ME intake (Mcal)       | 1.94       | 1.94 | 3.47   | 3.47  |
| Mean CP intake (g)          | 80         | 128  | 128    | 185   |
| <b>Colostrum Production</b> |            | kg   |        |       |
| First 3h after lambing      | 0.15       | 0.32 | 0.38   | 0.64  |
| First 24h after lambing     | 1.02       | 1.58 | 1.89   | 2.1   |

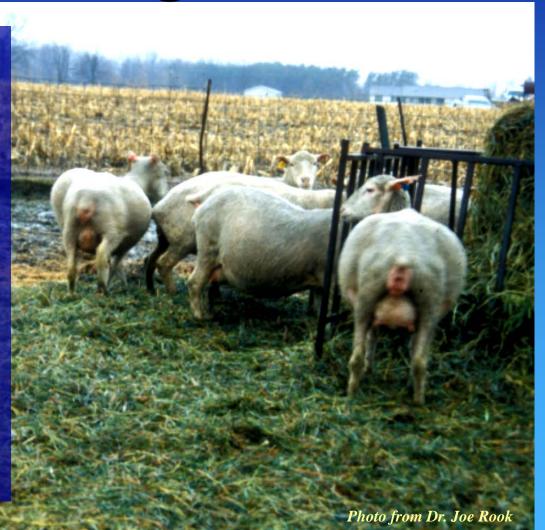
Robinson, 1987


## **Nutrition and Parasite Control**

- Improving protein and not energy status in late pregnancy improved GI immunity to parasites (Jones et al., Intl J Parasit 2011)
- Improved body protein status and increased dietary protein supply reduced fecal egg counts and improved immune status (Houdijik et al., Vet Parasit 2000; Houdijk et al., Parasitology 2001)
  - Diets provided either 85% or 130% of MP requirements

## **Effect of Protein on FEC**




**Fig. 1.** Backtransformed mean faecal egg count (FEC, expressed as no. of nematode eggs per g faeces (epg)) of single- or twin-rearing ewes fed *ad libitum* foods that were calculated to provide either scarce (○) or adequate (●) amount of metabolisable protein. The ewes were infected with *Teladorsagia circumcincta* at a rate of 10 000 3rd stage infective larvae per d for 3 d per week from day –49 onwards. (Redrawn from Houdijk *et al.* 2001*a.*)



**Fig. 2.** Backtransformed mean faecal egg count (FEC: expressed as no. of nematode eggs per g faeces (epg)) of twin-bearing and -rearing ewes offered a scarce (○) or adequate (●) amount of metabolisable protein during the periparturient period, following mid-pregnancy feeding strategies to (a) maintain or (b) reduce body protein. The ewes were infected with *Teladorsagia circumcincta* at a rate of 10 000 3rd stage infective larvae for 3d per week from day -63 onwards. (Redrawn from Houdijk *et al.* 2001*b.*)

# Why would a supplement be needed for a forage-based diet?

Is your forage appropriately **balanced** for macrominerals?



## **Calcium-Phosphorus Balance**

| Nutrient         | Grass Pasture<br>(DM basis) | Grass Pasture<br>(DM basis) |
|------------------|-----------------------------|-----------------------------|
| Dry matter, %    | 17.0                        | 31.6                        |
| Crude protein, % | 25.2                        | 16.6                        |
| ADF, %           | 31.0                        | 34.2                        |
| NDF, %           | 48.6                        | 56.3                        |
| Ca, %            | 0.46                        | 0.26                        |
| P, %             | 0.59                        | 0.34                        |
| Mg, %            | 0.27                        | 0.29                        |
| K, %             | 5.04                        | 2.63                        |
| Fe, ppm          | 919                         | 682                         |
| Cu, ppm          | 11                          | 11                          |
| Zn, ppm          | 40                          | 36                          |
| Flock Problem:   | Hypocalcemia                | Lamb leg fractures          |

# Urinary Calculi Risks

| Mineral    | Μ                                                                                | MG Pastu | Ire   | Grass<br>Pasture | MMG<br>Hay | Grass<br>Hay |  |  |
|------------|----------------------------------------------------------------------------------|----------|-------|------------------|------------|--------------|--|--|
| СР, %      | 15.3                                                                             | 21.9     | 20.4  | 15.6             | 12.8       | 10.8         |  |  |
| Ca, %      | 0.32                                                                             | 0.40     | 0.37  | 0.27             | 0.71       | 0.29         |  |  |
| P, %       | 0.33                                                                             | 0.41     | 0.40  | 0.41             | 0.25       | 0.54         |  |  |
| Mg, %      | 0.13                                                                             | 0.16     | 0.16  | 0.17             | 0.21       | 0.25         |  |  |
| Na, %      | 0.004                                                                            | 0.010    | 0.007 | 0.007            | 0.020      | 0.018        |  |  |
| K, %       | 2.65                                                                             | 3.16     | 3.11  | 2.27             | 1.73       | 3.26         |  |  |
| Cl, %      | 0.28                                                                             | 0.68     | 0.45  | 1.08             | 0.62       |              |  |  |
| S, %       | 0.21                                                                             | 0.27     | 0.26  | 0.27             | 0.21       |              |  |  |
| Forage sam | Forage samples from camelid farm having urolithiasis problems<br>in male animals |          |       |                  |            |              |  |  |

# Why would a supplement be needed for a forage-based diet?

**Does your** mineral supplement balance with your forage?



### **Forage Mineral Classification** 709 forage samples from 23 states

| Mineral         | Adequate | Marginal | Deficient | High  | Cu Anta | agonists |
|-----------------|----------|----------|-----------|-------|---------|----------|
| Copper          | 33.3 %   | 66.0 %   | 0.7 %     | 0 %   | Mod.    | High     |
| Manganese       | 85.3 %   | 14.1 %   | 0.6 %     | 0 %   |         |          |
| Zinc            | 23.0 %   | 43.7 %   | 33.3 %    | 0 %   |         |          |
| Selenium        | 30.2 %   | 26.1 %   | 43.4 %    | 0.3 % |         |          |
| Sulfur          | 25.5 %   | 22.0 %   | 6.0 %     | 2.0 % | 33.6 %  | 12.8 %   |
| Iron            | 70.5 %   | 0 %      | 2.8 %     | 1.7 % | 18.6 %  | 8.0 %    |
| Molyb-<br>denum | 51.5 %   | 0 %      | 0 %       | 2.7 % | 40.3 %  | 8.2 %    |

NAHMS, Mortimer et al., 1999

## **Forage Mineral Summary**

| Mineral | G     | rass Hay    | MN    | Sheep <sup>1</sup> |           |
|---------|-------|-------------|-------|--------------------|-----------|
| Ca, %   | 0.51  | 0.28 - 0.75 | 1.2   | 0.89 – 1.5         | 0.2-0.45  |
| P, %    | 0.24  | 0.15 - 0.34 | 0.29  | 0.23 - 0.34        | 0.15-0.35 |
| Mg, %   | 0.21  | 0.12 - 0.29 | 0.28  | 0.21 - 0.34        | 0.1-0.15  |
| Na, %   | 0.055 | 0.0 - 0.173 | 0.066 | 0-0.169            | 0.08-0.15 |
| K, %    | 1.9   | 1.23 – 2.52 | 2.15  | 1.66 – 2.65        | 0.5-0.7   |
| Fe, ppm | 188   | 0-469       | 256   | 0 - 590            | 30-100    |
| Zn, ppm | 26.8  | 4.3 - 49.3  | 23.6  | 8.6 - 38.6         | 25-50     |
| Cu, ppm | 9.2   | 0 – 19      | 9.8   | 0 - 38.3           | 5-8       |
| Mn, ppm | 77.2  | 13.2 – 141  | 42.6  | 13.9 – 71.3        | 20-40     |
| Mo, ppm | 1.05  | 0 – 2.58    | 1.35  | 0 – 2.7            | 0.5       |

<sup>1</sup>NRC, 2007 requirements; Maintenance – Lactating Dairy One Forage Composition Library, 2000-2012

# **Sheep Copper Deficient?**

Two sheep flocks adjacent to each other
 High lamb losses and 24 of 25 2-year old ewes died on one farm



# **Liver Mineral Diagnostics**

#### **Stillborn Lambs**

#### 2-year Old Ewes

| Test:<br>Samples:                                                             | Nutritional Minera<br>Liver | al Screen<br>429 | 380                 | Test:<br>Sample:             | Liver (dried) |                | /lineral Screen       |
|-------------------------------------------------------------------------------|-----------------------------|------------------|---------------------|------------------------------|---------------|----------------|-----------------------|
| Calcium                                                                       | ppm                         | 59.1             | 169                 | Calcium                      | ppm           | 248            |                       |
| Cobalt                                                                        | ppm                         | 0.013            | 0.020               | Cobalt                       | ppm           | 0.304          |                       |
| Copper                                                                        | ppm                         | 14.7             | <sub>22.2</sub> Low | Copper                       | ppm           | 140            | Normal                |
| Iron                                                                          | ppm                         | 134              | 80.5                | Iron                         | ppm           | 90.8           |                       |
| Magnesium                                                                     | ppm                         | 121              | 81.6                | Magnesium                    | ppm           | 703            |                       |
| Manganese                                                                     | ppm                         | 2.71             | 1.52                | Manganese                    |               | 10.6           |                       |
| Molybdenur                                                                    | n ppm                       | 0.221            | 0.039Norm           | Molybdenun                   | n ppm         | 6.68           | High                  |
| Selenium                                                                      | ppm                         | 0.281            | 0.295               | Selenium                     | ppm           | 2.51           | C                     |
| Zinc                                                                          | ppm                         | 11.5             | 48.7                | Zinc                         | ppm           | 252            |                       |
| All metal results are reported on a tissue wet weight basis.<br>(cb 02/05/15) |                             |                  |                     | All metal res<br>AW 04/03/15 |               | rted on a tiss | sue dry weight basis. |

## No evidence of infectious agents in lambs or ewes. No other significant findings to account for death losses.

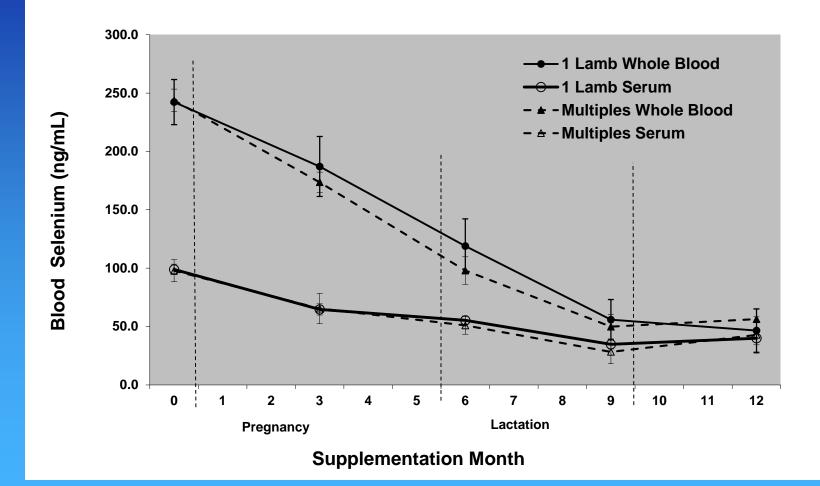
# **Forage Mineral**

#### **Problem Farm**

#### **Home Farm**

| Forage                            | Cu (ppm) | Mo (ppm | Forage                  | Cu (ppm) | Mo (ppm) |
|-----------------------------------|----------|---------|-------------------------|----------|----------|
| Baleage                           | 13       | 7.81    | 1 <sup>st</sup> Cut Hay | 12.0     | 1.45     |
| 1 <sup>st</sup> Cut Hay           | 8.0      | 3.46    | 2 <sup>nd</sup> Cut Hay | 11.0     | 2.13     |
| 1 <sup>st</sup> Cut<br>Round Bale | 7.0      | 5.66    | Grain mix               | 7.0      | 1.62     |
| 2 <sup>nd</sup> Cut<br>Round Bale | 11.0     | 7.15    |                         |          |          |
| Grain mix                         | 6.0      | 1.9     |                         |          |          |

Limestone mineral was spread on fields for past two years
 No problems on either farm noticed in older ewes
 Remaining "sick ewes" were brought to home farm and have improved


Postnatal Mineral & Vitamin Status **Dependent Upon:** > Placental Transfer ➤ Colostrum Maternal Nutrient **Status** 

## Vitamin and Mineral Nutrition

Macro- and Microminerals

- All efficiently cross placenta
- Fetal liver storage
- Colostrum concentrated
- Fat soluble vitamins
  - Do not cross placenta
  - Colostrum concentrated
  - Physiologic decline around lambing
- Drain on maternal status?
- > Adverse effect on immune function?

## Selenium Transfer



Hall et al., J Anim Sci 2011

# **Disease Consequences**

- Deficiencies in energy, protein, microminerals (Cu, Fe, Se, Zn) and vitamins (A, E) impair immune response
- Lambs with weakened immune response
  - Greater severity and duration of scours
  - More susceptible to pneumonia
  - Fail to build up response to coccidia

## **Parasites**

**Nutritional** status influences the animal's ability to fight off parasites and be able to adequately survive a mild to moderate infestation.



Dead sheep: diagnosis = Trichostrongylosis

## **Take Home Points**

- Assess forage quality to determine need for any supplement
  - Forage NDF may limit intake
  - Energy and/or protein may be limiting with mature forage
- Forage mineral content is dependent upon species, soil conditions and fertilization
  - Salt should always be available
  - Ca and P supplementation will depend upon forage
- Trace minerals is geographically defined
  No single product will work for all areas



