ALB Sustainability Research Project

Erin Recktenwald, Ph.D.

Richard Ehrhardt, Ph.D.

Michigan State University

Photo courtesy of Cat Macaluso

Greenhouse gases

- Carbon dioxide (CO₂) 80%
 - Fossil fuels
 - Electricity production
 - Fertilizer, lime, herbicides/pesticides
- Methane (CH₄) 10%
 - Enteric fermentation
 - Manure
- Nitrous oxide (N₂O) 7%
 - Manure, Fertilizer

Total U.S. Greenhouse Gas Emissions by Economic Sector in 2020

- Animal agriculture is 3.9% of U.S. GHG emissions
- Ruminants ~2.3%, mostly cattle
- Sheep approximately 1/100th of cattle (0.023%)

U.S. Methane emission sources in 2019

Values in million metric tons of CO2e, source: US Methane Emissions Reduction Action Plan

U.S. steps to reduce agricultural methane

- Growing Climate Solutions Act (2021)
 - Establishes a system for trading carbon credits
 - Not just big farms who can afford monitoring and technology
- USDA enhanced Conservation Reserve Program
 - Additional 4 million acres able to receive higher rental rates
 - Climate incentive payments
- Partnerships for Climate Smart Commodities
 - \$1 billion to incentivize and research climate beneficial practices
 - Manure management, on-farm renewable energy, feed additives, adoption potential
 - 141 selected projects
 - American Lamb Board recent recipient

Are all greenhouse gases the same?

- Carbon dioxide (CO₂) is the standard metric for reporting GHG emissions
 - CH₄ and N₂O are reported as CO₂ equivalents CO2e
 - Multiply each gas by its relative effect on warming
- Nitrous oxide (N₂O)
 - Ammonia and nitrogen oxides are converted into N₂O
 - Very strong GHG, ~300x more than CO₂
 - ~80% of N₂O emissions in U.S. are from N fertilization
- Methane (CH₄)
 - Bacterial fermentation product rumen and manure
 - Currently accounted as 28x stronger GHG than CO₂

Overview of U.S. Greenhouse Gas Emissions in 2020

Kilogram (Kg) of Consumed Food

Top options for reducing your carbon footprint

Average reduction per person per year in tonnes of CO2 equivalent

Live car-free 2.04

Refurbishment /renovation 0.895

Battery electric car 1.95

Vegan diet 0.8

One less long-haul flight per year 1.68

Heat pump 0.795

Renewable energy 1.6

Improved cooking equipment 0.65

Public transport 0.98

Renewable-based heating 0.64

Mazzetto et al. 2023 supplemental material

31% of sheep GHG emissions allocated to wool production

Factors that influence estimates

- Numerator, kg CO₂e
 - Total farm GHG emissions
 - >50% enteric CH₄
 - Farm inputs 5-30%, often fossil fuels used to produce and transport them
 - Manure, fertilizer, feed
- Denominator, kg product sold
 - Number of lambs sold
 - Expression of kg lamb sold as liveweight vs carcass weight vs retail cuts
 - √ Weight at slaughter
 - ✓ Proportion of lambs retained or sold for breeding stock
 - Amount and/or relative economic value of wool

Product

Evaluating the Environmental Footprint of the U.S. Sheep Industry

- Principle Investigator: Richard Ehrhardt
- Chief investigator: Erin Recktenwald
- Funded by: American Lamb Board
- Collaborators: Jason Rowntree and Kim Cassida
- Objectives:
 - Develop a GHG emission model for lamb production, partial LCA from cradle to farm gate
 - Collect data from a diversity of lamb production systems in the USA
 - Create a peer-reviewed report on the US lamb production footprint
 - Identify mitigation strategies to reduce GHG and develop an outreach plan

Production categories

- Intensive production: high prolificacy, mainly housed ewes and lambs
- Intensive grazing: high prolificacy, moderately intensive grazing management
- Extensive grazing: moderate prolificacy, less intensive grazing management
- Range: native pasture, low inputs, mainly sold as feeder lambs
- Feedlot: intensively managed/fed lambs, indoors or dry lot

Descriptive elements of US sheep production systems

	Intensive	Intensive graze	Extensive graze	Range
Number of breeding ewes	1400 (200-4800)	1600 (300-3900)	280 (120-400)	2800 (1500-4500)
% of year on pasture	13 (0-31)	65 (42-97)	89 (55-100)	94 (75-100)
Feed purchased/ewe/year, lb	1200 (540-2000)	690 (210-1800)	290 (60-670)	40 (0-90)
ADG of market lambs, lb/d	0.77a (0.74-0.82)	0.44b (0.35-0.58)	0.53b (0.45-0.61)	0.54b (0.46-0.61)
Weaned lambs/ewe/year	1.88a (1.6-2.2)	1.62a (1.5-1.7)	1.18b (0.9-1.5)	1.01b (0.8-1.3)

CO₂e/kg all lamb sold

CO₂e/kg all product sold

Intensive sources of GHG

Extensive grazing sources of GHG

Intensive grazing sources of GHG

Range sources of GHG

■ Enteric CH4

Manure

Land

Fuel and electricity

Purchased feed

Other

Factors that impacted GHG/kg lamb

- Used statistical selection procedure (stepwise regression) to identify the most impactful GHG factors
- 1. Weaned lambs per ewe
- 2. Replacement rate
- 3. Number of breeding ewes
- 4. % of time on pasture
- 5. Kg feed per ewe
- 6. Ewe first breeding age
- 7. Fuel per ewe
- 8. ADG market lambs

- Number of breeding ewes
- Replacement rate
- Weaned lambs per ewe
- Other

Change in GHG emissions due to performance

Comparison of Methane Accounting Methods

Mitigation: Enteric CH₄ and Manure

- CH₄ production based on feed intake
 - Fewer animals, fewer days to produce product
 - Substantial impact on total emissions
- Feed additives: 3-NOP reduces enteric CH₄ by ~20-40%
 - Currently developing pasture-based product
 - Seaweed, lipids, essential oils
 - Bromoform safety
- Genetics: NZ and Ireland producing low-CH₄ emitting lines, 20% reduction
- Manure management options limited, ~2-10% of emissions
 - Focus of dairy, swine, poultry industries
 - Precision feeding reduce N excretion
 - Impact of composting unknown, highly variable GHG due to aerobic and moisture
 - Adds biomass to soil, organic N, diverts from high emissions system

Mitigation: Feeding strategies

Feed composition

- Improving forage quality generally reduces CH₄ yield, better performance with similar intake
- Concentrate-based diets, change rumen fermentation so less favorable to CH_4 formation (not verified in sheep!)

Forage selection

- Tanniferous forages have ~10% lower CH₄ yield/kg intake (Arndt 2021)
- Brassicas have ~25% lower CH₄/kg intake (NZ)
- Plantain inclusion (30-50%) reduces nitrate leaching by 20-60%
- Many plant species may have chemistry to lower CH₄ but remain unexplored (US sheep may already be grazing such plants but we do not have this information to model).

Climate Metrics for Ruminant Livestock by University of Oxford

Mitigation: Farm inputs and Energy use

- Majority of purchases are feed, fertilizer, fuel
- Feed production
 - Harvesting practices
 - Less fertilizer through precision management
 - Timing of applications
 - <5% of GHG on almost all farms
 - Efficient water use
 - Irrigation practices, drought-resistant species
- Fuel use, ~5% of emissions
 - Fewer passes on fields
 - More efficient technology
 - Renewable energy sources, Solar arrays

Potential change in tonnes of Carbon

- Incorporate practices that decrease emissions from 20 to 15 kg
 CO2/kg lamb
- Abatement of 5 * 50 kg lambs * 1,000 lambs = ~250 metric tons CO2e
- 250 carbon credits * \$20 = \$5,000
- Benefits likely through improved production efficiency
 - Higher ewe productivity, better health, mortality
- Environmentally friendly often budget friendly too!

Mitigation: Cover crops

- Large variability in soil OM and N emissions
 - Climate, seasonal weather, soil type, management, species
- Generally, inclusion of cover crops:
- Reduces N leaching
 - Groundwater contamination, N₂O formation
- Increases soil OM (C sequestration)
 - Better water infiltration and water holding capacity, less prone to compaction
 - More able to hold/supply nutrients, aid in decomposition and microbial life
- Slight decline in primary crop yield (?)

Grazing work at Lake City Research Station

- Compared beef cattle finishing systems: Feedlot vs Grass-fed
 - Adaptive multi-paddock grazing from May to November on alfalfa and cool season grasses

Mitigation: Grazing practices

- MSU beef grazing study, ~0.5% increase in SOC/year
 - ~3.5 Mg C/ha/year or ~5,000 kg CO₂/acre/year
 - $\sim 500-1500 \text{ kg CO}_2\text{e/market lamb}$
- Dairy industry sustainability: indirectly via feed production
 - Promote cropping practices that increase SOC
- Major component of U.S. Roundtable for Sustainable Beef
 - Very difficult to estimate
 - Temporary weather, change practices, previous management
- New technologies being developed satellite monitoring
- Value in maintaining carbon in land!

MSU study and potential GHG mitigation

- GHG emissions varied numerically according production system
 - 12-20 kg CO₂e/kg lamb sold
 - Different GHG profiles across production systems: % Enteric CH₄
- GHG emissions on a total sheep product basis did not differ significantly between sheep production systems
- Emissions dependent on weaned lambs/ewe/year and replacement rate
 - Higher production efficiency = lower GHG
- Mitigation options:
 - Targeting enteric CH₄ (additives, tannins, brassicas, genetics)
 - Feeding practices: high quality forage, precision feeding (lower CP)
 - Manure storage and application
 - Feed production (cover crops, no or low-till, fertilizer use)
 - Grazing management (soil sequestration)
 - Farm energy use shift to on-farm generation, renewables

Positive contributions of sheep production to the environment

- Carbon maintenance/sequestration via proper grazing management
- Improved wildlife habitat and biodiversity with proper grazing management
- Control of invasive species
- Protection of water sheds via proper grazing management
- Wildfire: control of fuel loads
- How do we value these positives that other animal industries may lack against the negative of methane emissions?

Awareness of an active and evolving science

- Twitter
 - Influencers
 - Academics and Institutions
- Centers, Universities, Initiatives, Books

Thank you!

Erin Recktenwald ebr@msu.edu

Richard Ehrhardt ehrhard5@msu.edu

